rPPG: PhysNet Review
大约 1 分钟
rPPG: PhysNet Review
Conventional Model Drawbacks
- Only one simple output - HR, which limits usage in demanding medical applications.
- end-to-end neural networks lost the pre-processing and post-processing steps.
- Without considering temporal context features.
- Need pure empirical knowledge and handcrafted processing, which may cause crucial features lost.
PhysNet Advantages
- Considering the temporal context
- Multiple spatio-temporal neural networks are compared
- Not only predict HR, but also output Heart Rate Variability(HRV), efficient for medical application.
- Generalized well.
How does it works?
其中,[step1]
和[step2]
采用 3DCNN 网络来实现,相较于传统方法考虑到了时间上下文特征。
Loss Function and Ground Truth
Loss Function
其中,是信号长度,为预测的 rPPG 信号,为真实的 PPG 信号。
该损失函数是 1 减去负皮尔逊相关系数,Loss 越小说明 rPPG 与 Ground Truth 越相关,确保二者的趋势相似性(Trend-similarity)和最小化峰值位置误差(minimize-peak-location-errors)
Ground Truth
选择 PPG 信号 作为真实值
PPG 信号与 ECG(心电图)信号相比较
因为从手腕上采集的 PPG 信号与我们恢复的 rPPG 信号更相似,ECG 信号包含了肌电的活动,这在 rPPG 上是恢复不出来的,所以采用 PPG 做标定